Exercise 10

Convert each of the following Fredholm integral equation in 9-16 to an equivalent BVP:

$$
u(x)=3 x^{2}+\int_{0}^{1} K(x, t) u(t) d t, K(x, t)= \begin{cases}t(1-x), & \text { for } 0 \leq t \leq x \\ x(1-t), & \text { for } x \leq t \leq 1\end{cases}
$$

Solution

Substitute the given kernel $K(x, t)$ into the integral.

$$
\begin{equation*}
u(x)=3 x^{2}+\int_{0}^{x} t(1-x) u(t) d t+\int_{x}^{1} x(1-t) u(t) d t \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=6 x+\frac{d}{d x} \int_{0}^{x} t(1-x) u(t) d t+\frac{d}{d x} \int_{x}^{1} x(1-t) u(t) d t
$$

Apply the Leibnitz rule to differentiate the integrals.

$$
\begin{aligned}
& \begin{array}{l}
=6 x+\int_{0}^{x} \frac{\partial}{\partial x} t(1-x) u(t) d t+x(1-x) u(x) \cdot 1
\end{array}-(0)(1-x) u(0) \cdot 0 \\
& \quad \quad+\int_{x}^{1} \frac{\partial}{\partial x} x(1-t) u(t) d t+x(0) u(1) \cdot 0-x(1-x) u(x) \cdot 1 \\
& =6 x+\int_{0}^{x}(-t) u(t) d t+\int_{x}^{1}(1-t) u(t) d t \\
& =6 x-\int_{0}^{x} t u(t) d t-\int_{1}^{x}(1-t) u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x once more.

$$
\begin{aligned}
u^{\prime \prime}(x) & =6-\frac{d}{d x} \int_{0}^{x} t u(t) d t-\frac{d}{d x} \int_{1}^{x}(1-t) u(t) d t \\
& =6-x u(x)-(1-x) u(x) \\
& =6-x u(x)-u(x)+x y(x)
\end{aligned}
$$

The boundary conditions are found by setting $x=0$ and $x=1$ in equation (1).

$$
\begin{aligned}
& u(0)=3(0)^{2}+\int_{0}^{0} t(1) u(t) d t+\int_{0}^{1}(0)(1-t) u(t) d t=0 \\
& u(1)=3(1)^{2}+\int_{0}^{1} t(0) u(t) d t+\int_{1}^{1}(1)(1-t) u(t) d t=3
\end{aligned}
$$

Therefore, the equivalent BVP is

$$
u^{\prime \prime}+u=6, u(0)=0, u(1)=3 .
$$

